Image Registration Using Markov Random Coefficient Fields
نویسندگان
چکیده
Image Registration is central to different applications such as medical analysis, biomedical systems, image guidance, etc. In this paper we propose a new algorithm for multi-modal image registration. A Bayesian formulation is presented in which a likelihood term is defined using an observation model based on linear intensity transformation functions. The coefficients of these transformations are represented as prior information by means of Markov random fields. This probabilistic approach allows one to find optimal estimators by minimizing an energy function in terms of both the parameters that control the affine transformation of one of the images and the coefficient fields of the intensity transformations for each pixel.
منابع مشابه
Image registration using Markov random coefficient and geometric transformation fields
Image Registration is central to different applications such as medical analysis, biomedical systems, image guidance, etc. In this paper we propose a new algorithm for multimodal image registration. A Bayesian formulation is presented in which a likelihood term is defined using an observation model based on coefficient and geometric fields. These coefficients, that represent the local intensity...
متن کاملRigid Slice-To-Volume Medical Image Registration Through Markov Random Fields
Rigid slice-to-volume registration is a challenging task, which finds application in medical imaging problems like image fusion for image guided surgeries and motion correction for volume reconstruction. It is usually formulated as an optimization problem and solved using standard continuous methods. In this paper, we discuss how this task be formulated as a discrete labeling problem on a graph...
متن کاملRegistration of Temporal Ultrasonic Image Sequences Using Markov Random Fields
Ultrasound perfusion imaging is a rapid and inexpensive technique which enables observation of a dynamic process with high temporal resolution. The image acquisition is disturbed by various motion influences due to the acquisition procedure and patient motion. To extract valid information about perfusion for quantification and diagnostic purposes this influence must be compensated. In this work...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008